Over the last 400,000 years the Earth's climate has been unstable, with very significant temperature changes, going from a warm climate to an ice age in as rapidly as a few decades. These rapid changes suggest that climate may be quite sensitive to internal or external climate forcings and feedbacks. As can be seen from the blue curve, temperatures have been less variable during the last 10 000 years. Based on the incomplete evidence available, it is unlikely that global mean temperatures have varied by more than 1°C in a century during this period. The information presented on this graph indicates a strong correlation between carbon dioxide content in the atmosphere and temperature. A possible scenario: anthropogenic emissions of GHGs could bring the climate to a state where it reverts to the highly unstable climate of the pre-ice age period. Rather than a linear evolution, the climate follows a non-linear path with sudden and dramatic surprises when GHG levels reach an as-yet unknown trigger point.
September 25, 2007 NASA-Melting Arctic sea ice has shrunk to a 29-year low, significantly below the minimum set in 2005, according to preliminary figures from the National Snow and Ice Data Center, part of the University of Colorado at Boulder. NASA scientists, who have been observing the declining Arctic sea ice cover since the earliest measurements in 1979, are working to understand this sudden speed-up of sea ice decline and what it means for the future of Earth's northern polar region.
At the end of each summer, the sea ice cover reaches its minimum extent and the ice that remains is called the perennial ice cover, which consists mainly of thick multi-year ice floes. The area of the perennial ice has been steadily decreasing since the satellite record began in 1979, at a rate of about 10% per decade. But the 2007 minimum, reached around Sept. 14, is far below the previous record made in 2005 and is about 38% lower than the climatological average. This data visualization shows the annual sea ice minimum from 1979 through 2007.
The Advanced Microwave Scanning Radiometer (AMSR-E) is a high-resolution passive microwave Instrument on NASA's Aqua satellite. AMSR-E provides a remarkably clear view of sea ice dynamics in greater detail than has ever been seen before. Researchers use this information to study polar bear habitats, plan expeditions to the ice, and to study the interactions between the ocean and sea ice from season to season. This data visualization shows Arctic sea ice from Jan. 1, 2007 to Sept. 16, 2007.
Because Arctic ice cover varies so much year to year, it can be dangerous to look at any one year and draw too much of a conclusion from it," said Waleed Abdalati, head of Goddard's Cryospheric Sciences Branch. "But this year, the amount of ice is so far below that of previous years that it really is cause for concern. The trend in decreasing ice cover seems to be getting stronger and stronger as time goes on."NASA developed the original capability to observe the extent and concentration of sea ice from space using passive microwave sensors. More recently, NASA launched an advanced microwave instrument in 2002 -- the Advanced Microwave Scanning Radiometer (AMSR-E) on the Aqua satellite -- that provides a view of sea ice dynamics in greater detail than has ever been seen before. Researchers use this information to study polar bear habitats and the unique movements of sea ice from season to season. AMSR-E is a joint project of NASA and the National Space Development Agency of Japan.
In September 2007, the Northwest Passage was ice-free for the first time since satellite records began. The passage is a direct route from Europe to Asia for ships traveling through the Arctic. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on NASA's Terra satellite captured this image of the ice-free Northwest Passage on Sept. 15, 2007.
Current satellites, however, can map sea ice in two dimensions, but it is much more difficult to find out how the thickness of the ice contributes to the change in the total volume of the ice. NASA's ICESat spacecraft (Ice, Cloud, and land Elevation Satellite), launched in 2003, with the primary goal of determining how much ice sheets are contributing to sea-level rise. ICESat is also collecting data that enables scientists to make estimates of sea ice thickness with unprecedented detail."What we need to truly understand the interaction of the ice, ocean and atmosphere in the Arctic is sea ice thickness information," said Abdalati. "The new capability we have with ICESat is expected to be extended into the next decade based on recent recommendations by the National Research Council for a follow-on mission. Ultimately, like the 29-year record we have now of sea ice cover, a long-term ice thickness record will help scientists understand these complex interactions and what the changes in the ice cover will mean to the ecology of the Arctic and to life on Earth."NASA has been observing sea ice from space since the 1970s, beginning with the Electricallly Scanning Microwave Radiometer (ESMR), Scanning Multichannel Microwave Radiometer (SSMR) and Special Sensor Microwave/Imager (SSM/I) sensors on the US Defense Meteorological Space Program (DMSP) satellites, and now with the AMSR-E instrument on NASA's Earth Observing System/Aqua satellite. Data collected by these instruments have been instrumental in shaping public policy and international perspectives on the Arctic.
The Greenhouse Effect
Labels:
Greenhouse Effect